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ABSTRACT
N

"' We consider optimization of schedules for maintenance or repairs,

in order to minimize long term average operating cost or to maximize

availability. The novelty here is that the failure rate after a main-

tenance operation is a function of the system's previously expended

lifetime. This generalizes earlier work by others on the simpler case

where the future rate depends only on the number of previous re-

pairs, but not on the times when they took place. The underlying

lifetime distributions are assumed to have the Weibull form and two

classes of maintenance strategies are considered.

The first case optimizes a set of successive maintenance intervals

T 1 , T2 , ... ,TN, and the number N, where a replacement by a new
N

system is made ,at tN = .7 Ti. For the specified model, we show
N i=1

that the optimal times Ti exists and are ordered as T, > T2 > ... > TN.

Additional properties of the optimal solutions are proved, and others

conjectured.

In the second case, the period of periodic maintenance is opti-

mized numerically. The main contribution in that case is the formula-

tion of the new failure rate model, and the efficient organization of

the optimization calculations.

This work was partially supported by Grant No. N00014-75-C-0858
from the Office of Naval Research.



1. INTRODUCTION

This work extends the maintenance models and policy optimiza-

tions described in the references. In particular, the ideas in Nguyen

and Murthy (to appear) and Goldstein (1980) were strong influences.

We consider optimization of the schedule of times at which pre-

ventive maintenance will be carried out on a system subject to stochas-

tic failures. Several different criteria are used to judge the quality

of a schedule, including long-term average operating costs per unit

time, and various definitions of availability. The effect of mainte-

nance is represented as a reduction in the subsequent failure rate.

One of our contributions is an approach for incorporating the influ-

ence of past operating time on the new railure rate functions which

applies after a maintenance operation.

A component or system with a failure time t (random variable)

can be described by its failure rate or hazard rate r(t):

r(t)dt = P[t < t< t + dt t> t] (I)

where the cumulative distribution function is related to r(t) as

t
F(t) = 1 - exp(- f r(z) dz] (2)

0

Figure 1 shows two forms used later for the reduction in failure rate

at maintenance times t. In case a), maintenance reduces r(t) to

zero, but subsequent growth rate is greater than before the mainte-

nance. That growth rate will be a function of the previous operating

time t,. In case b), the growth rate of r(t) is constant, but mainte-

nance reduces r at ti by an amount dependent on ti" - A
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We define ri(t) between maintenance times as:
r(t) = ri(t - ti_ )  ti < t < t!. (3)

We consider ri(t) which are increasing in t, with numerical results

based on the Weibull forms

ri(t) = kite (4)

or

ri(t) = X 1(t +

(equivalent to r(t) = 1, 1ta - Ai )

These ri(t) are also increasing functions of the maintenance intervals

T. = (tj - t,. 1 ) for j < i.

In some models we permit minor repairs when the system fails.

After such a repair, the failure rate r(t) evolves as if no failure had

occurred. This model is often used for complex equipment in which

the next failure is unlikely to be related to the component which was

just repaired. From this point of view, the number of failures and

minor repairs between maintenance times, N(tll, ti), has

t.

E[N(t_1 , ti)] = f ri(t) dt (5)
ti-1

For both cases in Fig. 1, the system wears out (r(t) m as

t * ,) so complete replacement (renewal) is eventually required.

Section 2 considers a problem where minor repairs are permitted

between maintenance times, and costs are assigned to renewal, minor

repair and maintenance operations. With replacement at tN, we seek-

the best N and t 1 , t 2 , ... N 1 to minimize the average cost per unit

time when renewal cycles are repeated indefinitely. This is mathe-
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I:
matically equivalent to maximizing the steady-state availability, by

suitable reinterpretation of the costs.

Section 3 assumes that each failure requires a complete renewal,

and that the maintenance times are equally spaced (often the case due

to work schedules). Cycle availability Ac is defined as the fraction of

time that the system is up (not in maintenance or replacement opera-

tions) during one renewal cycle. The maintenance period is sought to

maximize

P[Ac > 6] , < 6 < 0 (6)

2. SCHEDULES WITH MINOR REPAIRS

We assume that renewal occurs at tN with a cost CR; mainte-

nance occurs at TI, T 2 1 ... , TN. 1 at a cost of CM each time; and

minor repairs occur at each failure with a cost Cr .  The expected

cost per renewal cycle is then

N T
L(N, r) = CR + (N-i) CM + Cr I f r.(t) dt (7)

j=1 0

where t1- (TI, T 2 ,.... TN).

For these purposes, all three corrective operations are assumed

to be instantaneous, corresponding to practical durations which are

small compared to system uptime. The renewal cycle duration is then

N
D(N, ) tN =I T (8)

and the long-term average cost per renewal cycle is

C(N, f)= L(N, f)/D(N, T) (9)

-4-
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Theorem 1

If i) ri(t) is strictly increasing in t, T,,..., Ti.1
82ri (t)
2r T Tn > 0 all i, t, m, n

Then the necessary conditions

L (N, 'f) AanL(N ) = C*(N, I') , i = 1,2,..., N (10)

have a solution corresponding to a global minimum of C(N, I) with

respect to the Ti. Saddle points, but not a relative maximum, are

also possible solutions to (10).

Proof: Evaluation of the Hessian matrix at the stationary point
shows that a relative maximum cannot exist for any t.
C(N, 7) is a continuous function of the Ti and it
approaches infinity as II J i 0 or - .

Theorem 2

if the ri(t) have the WeibuU form

i-i

ri(t) = Xo(1 + e I T] t (11)
j=1

then the optimal T1 are ordered as

Proof: This result is derived by showing that if Ti=a<Ti b,

the average cost will be reduced by changing to T = b,
Ti+1 = a, while keeping all other T unchanged. The

comparison is facilitated by the fact that this inter-
change does not affect tN or rk(t) for k < i or
k > i+1.

Another optimal-solution property which aids in computational

problems is summarized in

ii-5
'ii,



Theorem 3:

If a) ri(t) are strictly increasing in t, and

ar i  ar.
b) - =-+ all n < i, m <

Then the optimal Ti satisfy

ri(T~i) < r.(T) ; i < j (13)

The Weibull ri(t) in Theorem 2 satisfies the conditions of Theorem 3.

The result is exemplified in Fig. 1(a) where the peaks get higher

going to the right.

Proof: This follows from examination of the following relation,
based on (10).

Li(N, T) - Li+I(N, 2)=0.

The preceding theorems all deal with the case of fixed N. We

also want to find the optimum number of maintenance operations

(N-i). Clearly, interesting cases will require CR > Cm and CR > Cr .

The following properties have been observed in all numerical examples

we have studied, but sufficient conditions and proofs have not yet

been found.

N
Conjecture 1. t =I T* is an increasing function of N.

1
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Conjecture 2. The minimal cost as a function of N is convex, as in
Fig. 2, so that an optimal N* can be found by getting
(1) '2)" ... until

C(N+I. , N ) > C(N, N)(1)' (2)'

The model considered here is closely related to one in Nguyen and

Murthy. They have ri(t) as functions of i only (not on ti). In that

simpler case, equation (13) is replaced by ri(Ti*) = rM(T) and Con-

jecture 2 has been proved.

We now turn to a slightly different problem, using (9) for the

criterion, but with case (b) of Fig. 1 to represent the maintenance

effect. In particular

ri(t) = X(t + ti. 1 ) - y ti_1 ; 0< Y < (14)

Fig. 1(b) has y = X/2. Expressing (14) in terms of the intervals T.

we have

i-1
ri(t) = X t + (A-y) I T. (15)

1

so that ri(t) is an increasing function of t and the T (j < i).

Here, a necessary condition for the best T.'s based on partial

derivatives of (9), is

y(Ti - T) = 0 ; i, j = 1,2,..., N . (16)

Thus, for this model

T = T - . T&= T* (17)

Substitution of (17) into C(N, 1) leads to

T* [-(A-y)(N-1) + 4(X-y)-(N-1)z + 8X(CR- (N-I)CM)ICr]/ 2X (18)

-7-



. In this example we have also found an optimal N in every nu-

merical example. Although the joint optimization of N and 'f reduces

here to a two parameter optimization (N and T*), existence and

uniqueness of the overall minimum have not yet been proved.

All of the preceding results can be interpreted with respect to

an availability criterion. If CR, CM and Cr are viewed as the mean

times required, respectively, for replacement, maintenance and minor

repair, then the long-term availability is

A[N, ,] = DfN, [1 + C(N,
L[N, '] + D[N, T]

Thus, A is maximized here by minimizing C using the techniques

described earlier.

3. PERIODIC MAINTENANCE -- NO MINOR REPAIRS

In this model every failure is followed by a replacement (re-

newal). The replacement time has an exponential distribution with

mean value 1/p, and maintenance operations have fixed duration d.

The operating time between maintenances in u, and failure may occur

tion, of the form of case (b) in Fig. 1, occurs at the end of each

maintenance. The use of equal operating intervals between mainte-

nances is motivated by work-rule convenience and the results in the

previous section for a related problem where that structure is opti-

mal.

The maintenance effect is introduced differently here, but for

the example of linearly increasing hazard rate, there is a direct

8!I I _ _ _ _ _ _ _ _ _ _
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connection with the models of Section 2. Here we say that mainte-

nance reduces r(t) by a factor:

r(ti ; 0 < g <1 (19)r( r~j

Thus, for ti11 < t < ti

r(t) = r1 (t) -a (20)

Ai+ 1 = (1-g) [r 1 (t i ) - A]; A = 0

For the case of r 1 (t) = t, the maintenance effect becomes

= (1-g) [i As - Ai] (21)

where s = (u + d). Using the notation of (4), this is equivalent to

ri(t) = At + ei_1 ; = 2,3,... (22)

i
6i=Xs 1 gJ

j=1

where the ei are increasing functions of u (period between mainte-

nances).

We want to find u to maximize the probability that cycle avail-

ability is above an acceptable level. With Tu and Td representing

the total up and down times in a renewal cycle, we have

Tu

c- Tu+Td

and the quantity to be maximized is given in (6). Td includes all of

the time spent in maintenance before the failure, plus the replacement

time TR after the failure.

It is convenient to define Eu and Ed as the events that failure

occurs, respectively, during the nth operating interval or the nth

maintenance interval. Then

.-9-
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I.

>1 Un P(6) + D Qn(6)
P[A c > 1 1 n Dn n (23)n~l --_

n=1 1 n + D

where U = P[I u ] , D = P[EnI]n n n n(24)

Pn() = P[A >6IEu ] , Qn()P[Ac> 61EdI

Goldstein (1980) found analytical expressions for (23) in the simpler

case where the durations of each operating period, maintenance period

and replacement were independent random variables with exponential

distributions. Only numerical evaluation seems possible for the pre-

sent model.

The piecewise definition of r(t) in (20) can be converted to a

corresponding definition for the lifetime probability density which can

be used for numerical integration to evaluate the quantities in (23)

for each n. (The summation is truncated when terms become small.)

For tn.1 < t < tn we have

f(t) = r(t) R(t)

n-1
R(t) Rn(t) 1H R.(t.)j=1

t
R.(t) = exp[- f r(t)dT] t1 _ < t < t.

'. tj-1

Also, we note that using TR for the replacement time after failure

tnl +u

Pn(6) = f f(t) P{TR < [t(1-6)/6 - (n-l)d/6]}dt
tn-i

and a similar expression applies for Qn(6).

II' -10-
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Numerical examples have shown that this approach is practical to

get P(Ac > 6] for fixed u, and that a maximum can be found by

varying the value of u. Very small u will introduce excessive time

spent on maintenance; large u will delay maintenance until it is too

late to be effective. Figure 3 shows examples for P[Ac > 0.9] where

the optimum maintenance period is 0.07 of the mean lifetime, or 0.18

of the mean lifetime, for different parameter choices.

4. CONCLUSIONS

Optimization of maintenance schedules has been considered for

problems where maintenance reduces the subsequent failure rate by

an amount depending on the previous operating time of the system.

The analysis is more difficult than in similar problems where the

effect of maintenance depends only on the number of previous mainte-

nances. Some useful properties of optimal solutions have been demon-

strated, and others are yet to be verified.
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